SEPARATION OF STRONTIUM ION FROM A LARGE AMOUNT OF CALCIUM

ION BY THE USE OF A MACROCYCLIC ETHER

Toshimasa KIMURA, Kiyoshi IWASHIMA*, Tatsujiro ISHIMORI**, and Hiroshi HAMAGUCHI

Japan Chemical Analysis Center, Funato, Itabashi-ku, Tokyo 174

* Department of Radiological Health, Institute of Public Health,
Shiroganedai, Minato-ku, Tokyo 108 ** Institute for Atomic
Energy, Rikkyo University, Nagasaka, Yokosuka, Kanagawa 240-01

A small amount of $\mathrm{Sr}^{2+}(0.7 \sim 20~\mathrm{mg})$ was simply separated from a large amount of $\mathrm{Ca}^{2+}(1.5~\mathrm{g})$ by liquid-liquid extraction using dicyclohexyl-18-crown-6 chloroform solution. Average recovery of Sr^{2+} was 97 %, and the amount of Ca^{2+} in the final strontium fraction of the separation was decreased to $10^{-4} \sim 10^{-5}$ part of the initial amount.

The separation of strontium ion from calcium ion has been of importance in determining radioactive strontium nuclides in environmental samples which often contain a large amount of calcium. This letter describes the separation of strontium ion from a large amount of calcium ion by liquid-liquid extraction with a macrocyclic ether.

Formation of complexes of metal ions with a group of macrocyclic ethers, generally known as crown ethers, and solubilization of the complex salts in organic solvents have been reported. $^{1,2,3)}$ In the present work the crown ether dicyclohexyl-18-crown-6 was selected for the separation on the basis of its ring size $^{2)}$ and stability of its complexes with Ca $^{2+}$ and Sr $^{2+}$ in aqueous solutions. $^{1,2,3)}$ In chloroform it extracted Sr $^{2+}$ better than in toluene.

Strontium ion in aqueous solutions of pH $2.5 \sim 7$ was easily extracted by chloroform solution containing the crown ether in molar amount twice that of Sr^{2+} , when picrate was used as a counter ion of Sr(II)-complex. However, the extraction was appreciably decreased for an aqueous solution of pH 1.2: this is thought to be due to the hydrogen ion affinity of the picrate.

Acetic acid-sodium acetate(1:1) was used as a buffer reagent for the aqueous solution. Extraction of alkaline earth metal ions was examined at varying concentrations of the buffer reagent. The metal ions in aqueous solutions($[M^{2+}]=5.8$ mM, [sodium picrate]= 23 mM, the buffer reagent at varying concentrations; 10 ml) were extracted by the extractant(2.9 mM dicyclohexyl-18-crown-6 chloroform solution; 40 ml). Values of extraction percentage for Mg^{2+} , Ca^{2+} , Sr^{2+} , and Ba^{2+} were 2.8, 36, 100, and 100 without the buffer reagent; 2.1, 30, 100, and 99 at 0.02 M acetic acid and 0.02 M sodium acetate; and 0.7, 7.5, 98, and 98 at 0.17 M acetic acid and 0.17 M sodium acetate, respectively.

A procedure was devised for separating Sr^{2+} from a large amount of Ca^{2+} ; it is shown in Fig. 1. It was applied to separate mixtures of $0.7 \sim 20$ mg Sr^{2+} and 1.5 g Ca^{2+} ,

and the results are shown in Table 1. Strontium ion in sample solutions was extracted more than 98 % by the single extraction in the procedure. A small amount of Ca^{2+} was extracted into the organic phase with Sr^{2+} . However, this calcium ion was removed from the organic phase by double washing with the aqueous solution described in Fig. 1. Loss of strontium ion in the organic phase by a single washing procedure was less than 1 %. Strontium ion in organic phase-3(Fig. 1) was completely transferred in aqueous phase-4.

extractant ^{b)}	washing soln.c) v		
sample soln.a) — org	. phase-1 — org. pha	ase-2 — org. phase	e-3 — org. phase-4
L aq.	phase-1 aq. phas	se-2 aq. phase	-3 Laq. phase-4

Fig. 1. Procedure for the Separation of Sr²⁺ from Ca²⁺

a) 45 ml of 0.02 M sodium picrate — 0.055 M acetic acid — 0.055 M sodium acetate solution containing Ca and Sr ions; b) 40 ml of 0.011 M dicyclohexyl-18-crown-6 chloroform solution; c) 30 ml of 0.085 M acetic acid — 0.085 M sodium acetate — 0.015 M sodium picrate solution; d) 50 ml of 2 M ammonium chloride — 0.2 M hydrochloric acid solution.

sample Ca ²⁺ g	soln. Sr ²⁺ mg	aq. phase-1 Sr ²⁺ mg	aq. phase-2 Sr ²⁺ mg	aq.phase-3 Ca ²⁺ Sr ²⁺ mg mg	aq. phase-4 Ca ²⁺ Sr ²⁺ mg mg			
1.5	0.69 ^{a)}	0.013	0.001	2.03 0.001	0.11 0.66	96		
1.5	2.25	0.033	0.002	1.79 0.002	0.09 2.1	95		
1.5	10.4		0.012	1.01 0.017	0.04 10.1	97		
1.5	20.5	0.02	0.09	<u> </u>	0.02 20.7	101		

Table 1. Results of the Separation of Sr²⁺ from Ca²⁺

The extraction of ${\rm Mg}^{2+}$ was much less than that of ${\rm Ca}^{2+}$, and hence ${\rm Mg}^{2+}$ might be easily separated from ${\rm Sr}^{2+}$. Behavior of ${\rm Ba}^{2+}$ was similar to that of ${\rm Sr}^{2+}$.

By this method, the average recovery of Sr^{2+} was 97 %. The amount of Ca^{2+} in the final strontium fraction of the separation was found to be $10^{-4} \sim 10^{-5}$ part of the initial amount. These results compare well with those by the usual separations hitherto reported. The procedure is more rapid than that in the chromatographic ion-exchange methods, and is easier to be carried out than that in the precipitation methods.

Experimental: The dicyclohexyl-18-crown-6 was purchased from Nippon Soda Co., and was a mixture of two isomers. It was used without any purification. ${\rm Mg}^{2+}$, ${\rm Ca}^{2+}$, and ${\rm Sr}^{2+}$ in aqueous solution were determined by atomic absorption spectroscopy, and ${\rm Ba}^{2+}$ by flame photometry.

References

- 1) R. M. Izatt, et al., J. Am. Chem. Soc., 93, 1619(1971).
- 2) J. J. Christensen, D. J. Eatough, and R. M. Izatt, Chem. Rev., 74, 351(1974).
- 3) R. M. Izatt, Et al., J. Am. Chem. Soc., 98, 7620(1976).

a) impurity in the CaCl₂·H₂O reagent used.